BMSTU, RU DESCRIPTION OF THE PROMENG Curricula/Module

TITLE	Code								
CAD/CAM / CAE IOF engineers									
Teacher(s)						Dep	partment		
Coordinating: Navasardian E.S.			Depai	rtmer	nt E4 c	ΓU			
Others: Dontsova E.S., Parkin A.N.									
Study cycle	Study cycle Level of						Type of the module		
Master	The var	The variable			the	Electi	ve course		
	curriculun	n							
Form of dolivory		Dur	ation						
	two semes					Russia	an		
		Prerec	uisites	• •	(10		<u>``</u>		
Prerequisites: lecture courses: "An	nalysis and o	design	Co-ree	quisite	es (if n	ecessar	y):		
of machines and equipment of cry	ogenic syste	ms	110						
Credits of the module Total	student work	cload		Conta	act hou	irs	Individual work hours		
3 51 hour	S		51				51		
Aim of the module (aannea mait).	aamnat	ongo f	nnagaa	on hy	the stud	u nuoquamma		
Understanding technical drawings	Use high en	nd MCA	D mode	eler fo	or mor	lelling.	Modelling of virtual		
prototypes. Use MCAD as an engin	eering tool.	Use hig	gh end I	ECAD	mode	ler for i	modelling. Use ECAD as an		
engineering tool. Integrate MCAD	and ECAD						5		
Learning outcomes of module (co	urse unit)	Teac	hing/lea	arning	g metho	ods	Assessment methods		
1. Students must benifit from an	ıу	Lectu	i res, Co	onsulta	tions,				
representation is usefull in solvi	na a	Practia	acl work	, Indi	vidual		final nass		
technical problem.	nga	work					πια μασσ		
2 Lice high and MCAD m	adalar for	Lectu	res Co	nculta	tions				
modelling Modelling of virtual	nototypes	Practiacl work, Individual					nterim certification, the		
use MCAD as an engineering tool.	orocypes.	work					final pass		
3. Use high end MCAD modeler	r for	Lectu	ires, Co	onsulta	tions,		nterim contification the		
modelling. Modelling of virtual pro-	ototypes.	Practiacl work, Individual					final pass		
Use MCAD as an engineering tool		work							
4. Design of complex electronic	Lectu	Lasturas Consultations							
Design of elaborated schematics	Design of	Practia	acl work	. Indi	vidual		Interim certification, the		
PCB artwork. Development of	personnal	work		-,		1	final pass		
library.		T 4	~						
		Dreatin	ires, Co	onsulta	tions,	. I	nterim certification, the		
5.Sneetmetal design. Surface mod	ielling.	work	act work	., 111U	i viuua	u 1	final pass		
6 Decign on existing heat	and mass	Consu	Itations	Pract	iacl wo	ork.	nterim certification the		
exchange apparatus.						final pass			

	Contact work hours								Time and tasks for individual work	
Themes	Lectures	Consultations	Seminars	Practiacl work	Laboratory work	Placements	Total contact work	Individual work	Tasks	
1. Understanding technical drawings.	2	2	0	4	0	Э4	8	8	 Descriptive geometry : Geometrical projections, general principles; projection of points and lines, projection of planes. Engineering graphics : basic conventions for 	
									technical drawings : linetypes, views; sections, dimensions	
2. MCAD Basics.	2	2	0	4	0	Э4	8	8	1. Different models of 3D-modelling, surface modelling, wire frame modelling, complex curves and surfacing	
									2. Concepts of feature modelling, introduction to ProEngineer, basic modelling (tutorial based)	
									3. Basic modelling techniques, basic features, graphics environment of ProEngineer.	
									4. Edit definition and references	
3. ECAD Basics.	2	2	0	4	0	Э4	8	8	1. Different models of 3D-modelling, surface modelling, wire frame modelling, complex curves and surfacing.	

									 Concepts of feature modelling, introduction to ProEngineer, basic modelling (tutorial based). Basic modelling techniques, basic features, graphics environment of ProEngineer.
4. MCAD Advanced.	2	2	0	4	0	34	8	8	 Fundamentals on PCB design, and designing in industrial environment. Schematic electronic design - design of PCB artwork on multilayer PCB - design of library schematic components and footprints. Schematic electronic design - design of PCB artwork on multilayer PCB - design of PCB artwork on multilayer PCB - design of library schematic components and footprints.
5. ECAD Advanced.	2	2	0	4	0	Э4	8	8	 Walls, configuration, conversion of solids to sheetmetal. Punches and dies, creation of sheetmetal drawings. Surfaces made with solid-modelling features.
6. Student integrated project.	0	4	0	7	0	Э4	11	11	 Model all parts in Proengineer Create technical drawings from all

								parts.
Iš viso	10	14	0	27	0	51	51	

Assessment strategy	Weig ht in %	Deadlines	Assessment criteria
Issues in practical classes	20%	The end of practice session	Current Rating
Report on the material traversed themes	30%	End of topic	An interim pass
The final pass	50%	End of semester	The final pass

Author	Year	Title	No of		Place of printing. Printing	
	of issue		volume	ical or	house or intrenet link	
Compulsory literature						
		'Technical drawing' isbn 0-13- X	60648-		Pearson	
		Technical drawings — G principles of presentation - ISO-128-1				
Farid Amirouche	2004	"Principles of Computer Design and manufacturing",	-Aided		Pearson Education Inc	
Chang TC- Wysk RA- Wang H	2005	"Computer-Aided Manufacturir	"Computer-Aided Manufacturing"			
Valery Vodovozov		Introduction to electer engineering, , ISBN 978-87- 539-4	tronic -7681-			
Lee W.		Right the first time, Ritchey, 0-9741936-0-7	ISBN-			
Charles E. Knight,		"The finite element method in Mechanical Design"		PWS Kent		
Additional literature						
		Basic conventions for views El 128-30	N-ISO-			
		Basic conventions for cuts sections EN-ISO-128-40	s and			
		Basic conventions for lines El 128-20	N-ISO-			
		"Getting started with Proengineer WF5.0", PTC				
		High-Speed Board Layout Guidelines, Application Note 224, Altera				
Dean L. Taylor		"Computer Aided Design"			Addison Wesley	